Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099850

ABSTRACT

BACKGROUND: Investigating antibody titers in individuals who have been both naturally infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates of protection over time. METHODS: Human coronavirus (HCoV) IgG antibodies were measured longitudinally in a prospective cohort of qPCR-confirmed, COVID-19 recovered individuals (k = 57) in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were measured in serum collected between Nov. 2020 and Sept. 2021 (n = 341). Primary analysis used a linear mixed-effects model to understand the effect of single dose vaccination on antibody concentrations adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than 5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated participants, post-vaccination by qPCR performed on self-collected nasopharyngeal specimens. RESULTS: Bivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2 spike and RBD antibodies increased 14-56 days post-vaccination (p < 0.001) and vaccination prevented waning (regression coefficient, B = 1.66 [95%CI: 1.45-3.46]); while decline of nucleocapsid antibodies over time was observed (regression coefficient, B = -0.24 [95%CI: -1.2-(-0.12)]). A positive association was found between COVID-19 vaccination and endemic human ß-coronavirus IgG titer 14-56 days post vaccination (OC43, p = 0.02 & HKU1, p = 0.02). On average, SARS-CoV-2 anti-spike IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL (95%CI: 1.45-3.46) adjusting for age, biological sex, and time since infection. Cumulative incidence of high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared to unvaccinated individuals. CONCLUSIONS: Our study confirms that vaccination post-SARS-CoV-2 infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up to 85 days post-vaccination.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , Prospective Studies , COVID-19 Vaccines , Antibodies, Viral , Vaccination , Immunoglobulin G
3.
Microbiol Spectr ; 10(2): e0140521, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1736038

ABSTRACT

We investigate the diagnostic accuracy and predictive value of finger prick capillary dried blood spot (DBS) samples tested by a quantitative multiplex anti-immunoglobulin G (IgG) assay to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies after infection or vaccination. This cross-sectional study involved participants (n = 6,841) from several serological surveys conducted in nonhospitalized children and adults throughout 2020 and 2021 in British Columbia (BC), Canada. Analysis used paired DBS and serum samples from a subset of participants (n = 642) prior to vaccination to establish signal thresholds and calculate diagnostic accuracy by logistic regression. Discrimination of the logistic regression model was assessed by receiver operator curve (ROC) analysis in an n = 2,000 bootstrap of the paired sample (n = 642). The model was cross-validated in a subset of vaccinated persons (n = 90). Unpaired DBS samples (n = 6,723) were used to evaluate anti-IgG signal distributions. In comparison to paired serum, DBS samples from an unvaccinated population possessed a sensitivity of 79% (95% confidence interval [95% CI]: 58 to 91%) and specificity of 97% (95% CI: 95 to 98%). ROC analysis found that DBS samples accurately classify SARS-CoV-2 seroconversion at an 88% percent rate (area under the curve [AUC] = 88% [95% CI: 80 to 95%]). In coronavirus disease 2019 (COVID-19) vaccine dose one or two recipients, the sensitivity of DBS testing increased to 97% (95% CI: 83 to 99%) and 100% (95% CI: 88 to 100%). Modeling found that DBS testing possesses a high positive predictive value (98% [95% CI: 97 to 98%]) in a population with 75% seroprevalence. We demonstrate that DBS testing should be considered to reliably detect SARS-CoV-2 seropositivity from natural infection or vaccination. IMPORTANCE Dried blood spot samples have comparable diagnostic accuracy to serum collected by venipuncture when tested by an electrochemiluminescent assay for antibodies and should be considered to reliably detect seropositivity following SARS-CoV-2 infection and/or vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Antibody Formation , COVID-19/diagnosis , COVID-19 Vaccines , Child , Cross-Sectional Studies , Humans , Immunoglobulin G , Seroepidemiologic Studies
4.
J Virol Methods ; 299: 114339, 2022 01.
Article in English | MEDLINE | ID: covidwho-1472084

ABSTRACT

The COVID-19 pandemic has highlighted the need for generic reagents and flexible systems in diagnostic testing. Magnetic bead-based nucleic acid extraction protocols using 96-well plates on open liquid handlers are readily amenable to meet this need. Here, one such approach is rigorously optimized to minimize cross-well contamination while maintaining sensitivity.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19 Testing , Humans , Indicators and Reagents , Magnetic Phenomena , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
5.
EBioMedicine ; 66: 103316, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1163668

ABSTRACT

BACKGROUND: Angiotensin converting enzyme 2 (ACE2) protein serves as the host receptor for SARS-CoV-2, with a critical role in viral infection. We aim to understand population level variation of nasopharyngeal ACE2 transcription in people tested for COVID-19 and the relationship between ACE2 transcription and SARS-CoV-2 viral load, while adjusting for expression of: (i) the complementary protease, Transmembrane serine protease 2 (TMPRSS2), (ii) soluble ACE2, (iii) age, and (iv) biological sex. The ACE2 gene was targeted to measure expression of transmembrane and soluble transcripts. METHODS: A cross-sectional study of n = 424 "participants" aged 1-104 years referred for COVID-19 testing was performed in British Columbia, Canada. Patients who tested positive for COVID-19 were matched by age and biological sex to patients who tested negative. Viral load and host gene expression were assessed by quantitative reverse-transcriptase polymerase chain reaction. Bivariate analysis and multiple linear regression were performed to understand the role of nasopharyngeal ACE2 expression in SARS-CoV-2 infection. FINDINGS: Analysis showed no association between age and nasopharyngeal ACE2 transcription in those who tested negative for COVID-19 (P = 0•092). Mean relative transcription of transmembrane (P = 0•00012) and soluble (P<0•0001) ACE2 isoforms, as well as TMPRSS2 (P<0•0001) was higher in COVID-19-negative participants than COVID--19 positive ones, yielding a negative correlation between targeted host gene expression and positive COVID-19 diagnosis. In bivariate analysis of COVID-19-positive participants, transcription of transmembrane ACE2 positively correlated with SARS-CoV-2 viral RNA load (B = 0•49, R2=0•14, P<0•0001), transcription of soluble ACE2 negatively correlated (B= -0•85, R2= 0•26, P<0•0001), and no correlation was found with TMPRSS2 transcription (B= -0•042, R2=<0•10, P = 0•69). Multivariable analysis showed that the greatest viral RNA loads were observed in participants with high transmembrane ACE2 transcription (Β= 0•89, 95%CI: [0•59 to 1•18]), while transcription of the soluble isoform appears to protect against high viral RNA load in the upper respiratory tract (Β= -0•099, 95%CI: [-0•18 to -0•022]). INTERPRETATION: Nasopharyngeal ACE2 transcription plays a dual, contrasting role in SARS-CoV-2 infection of the upper respiratory tract. Transcription of the transmembrane ACE2 isoform positively correlates, while transcription of the soluble isoform negatively correlates with viral RNA load after adjusting for age, biological sex, and transcription of TMPRSS2. FUNDING: This project (COV-55) was funded by Genome British Columbia as part of their COVID-19 rapid response initiative.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 Testing , COVID-19/genetics , Nasopharynx/virology , Adult , Age Factors , Aged , Aged, 80 and over , British Columbia , COVID-19/virology , Cross-Sectional Studies , Female , Host-Pathogen Interactions/genetics , Humans , Male , Middle Aged , Nasopharynx/physiology , RNA, Viral/analysis , Serine Endopeptidases/genetics , Transcription, Genetic , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL